EASE EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING www.equipmentanchorage.com				
CHATSWORTH PRODUCTS, INC.	DES. J. ROBERSON	SHEET		
	JOB NO. 11 - 1131			
6" DEEP RACK	date 8/16/12	OF 4 SHEETS		

<u>SEISMIC ANCHORAGE</u> <u>CONCRETE SLAB</u>

FRONT ELEVATION

SIDE ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2010 CALIFORNIA BUILDING CODE AND ASCE 7-05 STRENGTH DESIGN IS USED.

HORIZONTAL FORCE (En) = 1.20 Wp (SDS = 2.00, ap = 2.5, Ip = 1.5, Rp = 2.5, z/h = 0.0) VERTICAL FORCE (Ev) = 0.40 Wp

- 2. CENTER OF GRAVITY (C.G.) WEIGHT IS A MAXIMUM. THIS PRE-APPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL PROVIDE SUPPORT STRUCTURE TO SUPPORT WEIGHTS AND FORCES SHOWN.

SEISMIC ANCHORAGE CONCRETE SLAB

LOADS: PER 2010 CALIFORNIA BUILDING CODE AND ASCE 7-05

(STRENGTH DESIGN IS USED) (SDs = 2.00, ap = 2.5, Ip = 1.5, Rp = 2.5, z/h = 0.0)

WEIGHT = 173 LB

HORIZONTAL FORCE (En) = 1.20Wp = 208 LB

VERTICAL FORCE (E_V) = 0.40W_p = 69 LB

BOLT FORCES:

TENSION (T)

BOLT SPECS: 1/2" HILTI KB-TZ (hef=3.25")

 $\Phi T = 0.75 \Phi Nn = 2396 LB/BOLT (TENSION)$

 $\Phi V = 0.75 \Phi V n = 3400 LB/BOLT (SHEAR)$

$$T_{\text{U MAXIMUM}} = \left[\frac{208\#(44'')}{2\text{BoLTS}(16'')} \times (0.3) \right] + \frac{208\#(44'')}{2\text{BoLTS}(15.5'')} - \frac{173\#(0.9) - 69\#}{4\text{BoLTS}} = 359 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - SIDE TO SIDE}) \quad (\text{HORIZ - FRONT TO BACK}) \quad (\text{WEIGHT (0.9) - E_y})$$

SHEAR (V) (ASSUMES HALF THE NUMBER OF BOLTS)

$$V_{U \text{ MAXIMUM}} = \frac{208\#}{2 \text{ Bolts}} = 104 \text{ LB/BOLT (MAX)}$$

PRYING

 $M_{PRYING} = 359\#(4.75") = 1705"\#$

 $T_{PRYING} = 1705"#/1.5" = 1137"#$

 $T_{MAX} = 1137"# + 359# = 1495 LB/BOLT (MAX)$

UNITY CHECK:

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \leq 1.2 \qquad \left(\frac{1495}{2396}\right) + \left(\frac{104}{3400}\right) = 0.65 \leq 12 \ \text{.} \ \text{.} \ \underline{O.K.}$$

^{*} MODEL REPRESENTED IN CALCULATION BELOW

CHATSWORTH PRODUCTS, INC. 6" DEEP RACK CHATSWORTH PRODUCTS AND DES. J. ROBERSON JOB NO. 11-1131 DATE 8/16/12 OF 4 SHEETS

SEISMIC ANCHORAGE

CONCRETE SLAB ON METAL DECK

No. 4197 EXP. 6-30-2014

NOTES:

1. FORCES ARE DETERMINED PER 2010 CALIFORNIA BUILDING CODE AND ASCE 7-05 STRENGTH DESIGN IS USED.

HORIZONTAL FORCE (En) = 3.60 Wp (SDS = 2.0, Ap = 2.5, Ip = 1.5, Rp = 2.5, $\mathrm{z/h} \le$ 1.0) VERTICAL FORCE (Ev) = 0.40 Wp

- 2. CENTER OF GRAVITY (C.G.) WEIGHT IS A MAXIMUM. THIS PRE-APPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL PROVIDE STRUCTURE TO SUPPORT WEIGHTS AND FORCES SHOWN.
- 4. STRUCTURAL ENGINEER OF RECORD SHALL DESIGN THE STRUT(S) AND ITS ATTACHMENTS TO RESIST A LOAD NOT LESS THAN VUSTRUT IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT, WHERE VUSTRUT = 0.6VUMMXX (NO. OF ANCHORS ENGAGED BY STRUT) (MIN)
- 5. AT CONDITIONS WHERE NUT CANNOT BE PROVIDED AT TOP SIDE OF STRUT, PROVIDE TAPPED HOLE THROUGH STRUT FLANGE.

SEISMIC ANCHORAGE

CONCRETE SLAB ON METAL DECK

MODEL NO.	"A"	WEIGHT (lbs)	Tu (lb/bolt)	Yu (lb/bolt)
* 66353-X03	16"	173	4663	156
66363-X03	32"	175	4200	158

^{*} MODEL REPRESENTED IN CALCULATION BELOW

 $\underline{\mathsf{LOADS:}}$ PER 2010 CALIFORNIA BUILDING CODE AND ASCE 7-05

(STRENGTH DESIGN IS USED) (SDS = 2.00, Ap = 2.5, Ip = 1.5, Rp = 2.5, $\mathrm{z/h} \le$ 1.0)

WEIGHT = 173 LB

HORIZONTAL FORCE (E_h) = $3.60W_P$ = 622 LB

VERTICAL FORCE (Ev) = 0.40Wp = 69 LB

BOLT FORCES:

BOLT SPECS: 1/2"ø (A36) THREADED ROD

φT = 6610 LB/B0LT φV = 3530 LB/B0LT

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{622\#(44'')}{2\text{Bolts}(16'')} \times (0.3) \right] + \frac{622\#(44'')}{2\text{Bolts}(15.5'')} - \frac{173\#(0.9) - 69\#}{4\text{Bolts}} = 1119 \text{ LB/BOLT (MAX)}$$

(HORIZ - SIDE TO SIDE) (HORIZ - FRONT TO BACK) (WEIGHT (0.9) - E_{ν})

SHEAR (V)

$$V_{U\ MAXIMUM} = \frac{622\#}{4_{BOLTS}} = 156\ LB/BOLT\ (MAX)\ (PER\ AISC\ J3.7,\ LESS\ THAN\ 20\%\ STRESS)$$

PRYING

 $M_{PRYING} = 1119#(4.75") = 5315"#$

 $T_{PRYING} = 5315"#/1.5" = 3544"#$

 T_{MAX} = 3544"# + 1114# = 4663 LB/BOLT (MAX)