

<u>SEISMIC ANCHORAGE</u> <u>CONCRETE SLAB</u>

NOTES:

1. FORCES ARE DETERMINED PER 2010 CALIFORNIA BUILDING CODE AND ASCE 7-05 STRENGTH DESIGN IS USED.

HORIZONTAL FORCE (En) = 0.90 Wp (SDS = 2.00, Ap = 2.5, Ip = 1.5, Rp = 6.0, $\mathrm{z/h}$ = 0.0) VERTICAL FORCE (Ev) = 0.40 Wp

- 2. CENTER OF GRAVITY (C.G.) WEIGHT IS A MAXIMUM. THIS PRE-APPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL PROVIDE SUPPORT STRUCTURE TO SUPPORT WEIGHTS AND FORCES SHOWN.

SEISMIC ANCHORAGE CONCRETE SLAB

PLAN VIEW

(WEIGHT (0.9) - E_v)

LOADS: PER 2010 CALIFORNIA BUILDING CODE AND ASCE 7-05 (STRENGTH DESIGN IS USED) (SDS = 2.00, 2p = 2.5, 2p = 1.5, 2p = 6.0, 2p = 0.0)

WEIGHT = 237 LB HORIZONTAL FORCE (E_h) = $0.90W_p$ = 213 LB VERTICAL FORCE (E_v) = $0.40W_p$ = 95 LB

BOLT FORCES:

TENSION (T)

BOLT SPECS: 1/2" ϕ HILTI KB-TZ ϕ T=0.75 ϕ Nn = 2396 LB/BOLT (TENSION) ϕ V=0.75 ϕ Vn = 3232 LB/BOLT (SHEAR)

$$T_{\text{U MAXIMUM}} = \left[\frac{213\#(44'')}{2\text{BOLTS}(36.75'')} \times (0.3) \right] + \frac{213\#(44'')}{2\text{BOLTS}(16'')} - \frac{237\#(0.9) - 95\#}{4\text{BOLTS}} = 302 \text{ LB/BOLT (MAX)}$$

(HORIZ. - FRONT TO BACK)

SHEAR (V) (ASSUMES HALF THE NUMBER OF BOLTS)

$$V_{U MAXIMUM} = \frac{213\#}{2BOLTS} = 107 LB/BOLT (MAX)$$

(HORIZ. - SIDE TO SIDE)

PRYING

 $M_{PRYING} = 302\#(4.75") = 1435"\#$

 $T_{PRYING} = 1435"#/1.5" = 957"#$

 $T_{MAX} = 957"# + 302# = 1258 LB/BOLT (MAX)$

UNITY CHECK:

$$\left(\frac{T_U}{\Phi T}\right) + \left(\frac{V_U}{\Phi V}\right) \le 1.2 \quad \left(\frac{1258}{2396}\right) + \left(\frac{107}{3232}\right) = 0.56 \le 1.2$$
 .°. O.K.

NOTES:

1. FORCES ARE DETERMINED PER 2010 CALIFORNIA BUILDING CODE AND ASCE 7-05 STRENGTH DESIGN IS USED.

 $T_u = 2179 LB/BOLT (MAX)$ $V_u = 89 LB/BOLT (MAX)$

HORIZONTAL FORCE (Eh) = 1.50 Wp (SDS = 2.00, Ap = 2.5, Ip = 1.5, Rp = 6.0, $z/h \le 1.0$) VERTICAL FORCE (Ev) = 0.40 Wp

- 2. CENTER OF GRAVITY (C.G.) WEIGHT IS A MAXIMUM. THIS PRE-APPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD SHALL PROVIDE STRUCTURE TO SUPPORT WEIGHTS AND FORCES SHOWN.
- 4. STRUCTURAL ENGINEER OF RECORD SHALL DESIGN THE STRUT(S) AND ITS
 ATTACHMENTS TO RESIST A LOAD NOT LESS THAN VUSTRUT IN COMBINATION WITH ALL OTHER LOADS
 THAT MAY BE PRESENT, WHERE VUSTRUT = 0.6VUMMXX (NO. OF ANCHORS ENGAGED BY STRUT) (MIN)
- 5. AT CONDITIONS WHERE NUT CANNOT BE PROVIDED AT TOP SIDE OF STRUT, PROVIDE TAPPED HOLE THROUGH STRUT FLANGE.

SEISMIC ANCHORAGE

CONCRETE SLAB ON METAL DECK

PLAN VIEW

<u>LOADS:</u> PER 2010 CALIFORNIA BUILDING CODE AND ASCE 7-05 (STRENGTH DESIGN IS USED) (SDS = 2.00, A_p = 2.5, I_p = 1.5, R_p = 6.0, $z/h \le 1.0$)

WEIGHT = 237 LB HORIZONTAL FORCE (E_h) = 1.50Wp = 356 LB VERTICAL FORCE (E_v) = 0.40Wp = 95 LB

BOLT FORCES:

BOLT SPEC: 1/2'b (A36) THREADED ROD

φT= 6610 LB/BOLT φV= 3530 LB/BOLT

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{356\#(44")}{2\text{BoLTS}(36.75")} \times (0.3) \right] + \frac{356\#(44")}{2\text{BoLTS}(16")} - \frac{237\#(0.9) - 95\#}{4\text{BoLTS}} = 523 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - SIDE TO SIDE}) \quad (\text{HORIZ - FRONT TO BACK}) \quad (\text{WEIGHT (0.9) - E_V})$$

SHEAR (V)

$$V_{U MAXIMUM} = \frac{356\#}{4 \text{BOLTS}} = 89 \text{ LB/BOLT (MAX) (PER AISC J3.7, LESS THAN 20% STRESS)}$$

PRYING

 $M_{PRYING} = 523\#(4.75") = 2484"\#$ $T_{PRYING} = 2485"\#/1.5" = 1657"\#$

 $T_{MAX} = 1657"# + 523# = 2179 LB/BOLT (MAX)$